338 research outputs found

    Preliminary feasibility study of a speed estimator for piezoelectric actuators used in forging processes

    Get PDF
    In this paper the feasibility of a speed estimator for a piezoelectric actuator used in a forging process is studied. It is based on a simplified linear model and its robustness is tested using a more complex model that include the hysteresis effects. The preliminary results proves that the concept is feasible despite the non-linearities, provided that some parameters of the actuator are known

    Vector control method applied to a traveling wave in a finite beam

    Get PDF
    This paper presents the closed-loop control of exciters to produce a traveling wave in a finite beam. This control is based on a dynamical modeling of the system established in a rotating reference frame. This method allows dynamic and independent control of the phase and amplitude of two vibration modes. The condition to obtain the traveling wave is written in this rotating frame, and requires having two vibration modes with the same amplitude, and imposing a phase shift of 90° between them. The advantage of the method is that it allows easy implementation of a closed loop control that can handle parameter drift of the system, after a temperature rise, for example. The modeling is compared with measurement on an experimental test bench which also implements real-time control. We managed to experimentally obtain a settling time of 250 ms for the traveling wave, and a standing wave ratio (SWR) of 1.3

    Preliminary feasibility study of a speed estimator for piezoelectric actuators used in forging processes

    Get PDF
    In this paper the feasibility of a speed estimator for a piezoelectric actuator used in a forging process is studied. It is based on a simplified linear model and its robustness is tested using a more complex model that include the hysteresis effects. The preliminary results proves that the concept is feasible despite the non-linearities, provided that some parameters of the actuator are known

    Analysis of the energy harvesting performance of a piezoelectric bender outside its resonance

    Get PDF
    When the frequency of the source of vibration of a piezolectric generator is significantly different from its eigenfrequency, the dielectric power losses become prominent and decrease the amount of power which is practically harvested. For off-resonance vibrating frequencies, the optimal operating conditions can be obtained with a Maximum Power Point Tracking method. This paper introduces complex phasors in the study of power conversion for piezoelectric generators. These complex phasors are used to describe three strategies which help simplify the tracking of the optimal generator output power for vibration frequencies which are away from resonance. Experimental results obtained on a prototype illustrate and confirm the approach with the phasor approaches illustrate and confirm the success of the proposed optimal power tracking strategies. Finally, we show that the efficiency results of each strategy depend on whether they are used inside or outside a frequency bandwidth around the eigenfrequency, and that the length of this bandwidth depends on the excitation amplitude.IRCICA Stimtac Project, INRIA Mint Project

    Geometrical optimization of an ultrasonic tactile plate for surface texture rendering

    Get PDF
    International audienceThe Tactile plate consists of piezo-ceramics glued on a copper-beryllium resonator. Its purpose is to create pro-grammable tactile sensations, which give the illusion of finely textured surfaces. The illusion originates from the variable friction between a finger and the vibrating resonator, caused by the squeeze film effect. In order to obtain a maximal deflection of the plate for a minimal supply voltage, an optimization is carried out of the length, thickness, and width of both the resonator and the ceramics. Constraints are realistic geometrical dimensions, a resonance frequency of at least 25 kHz, and a low supply voltage. The plate is modelled by both an analytical and a numerical model. The maximal dynamical deflection per volt was achieved with thin piezo ceramics (0.5 mm) at the minimal frequency of 25 kHz. A high deflection can be obtained in a wide range of the resonator length. With increasing length, the optimal resonator thickness increases too. The plate width seems to have little influence. Experiments are carried out on two plates with different geometry

    Preliminary design of a multi-touch ultrasonic tactile stimulator

    Get PDF
    This paper presents a method to control ultrasonic waves on a beam, allowing to obtain a Multi-touch ultrasonic tactile stimulation in two points, to give the sensation to two fingers, from two piezoelectric transducers. The multi-modal approach and the vector control method are used to regulate the vibration amplitude, in order to modulate the friction coefficient with the fingers. An analytical modelling is presented, with experimental validation. Finally a psychophysical experiment shows that a multi-touch ultrasonic tactile stimulation is possible.This work has been carried out within the framework of the project StimTac of IRCICA (institut de recherche sur les composants logiciels et matériel pour la communication avancée), and the Project Mint of Inria

    Modelling, identification and control of a Langevin transducer

    Get PDF
    The control of the vibration amplitude, and the resonance frequency tracking for ultrasonic transducer have been established. However, some applications require to control the vibration amplitude and its relative phase at a fixed frequency as the generation of travelling wave. In this paper, the transducer is modelled in rotating frame, and the decoupling according to two-axis allows to obtain a double independent closed loop control to address this issue. It is possible to control the transducer vibration amplitude and its relative phase, in steady state even in transient by acting on the amplitude of the supply voltage. Thanks to vector control method. This approach will be confirmed with experimental and simulation results.This work has been carried out within the framework of the project StimTac of IRCICA (institut de recherche sur les composants logiciels et matériel pour la communication avancée), and the Project Mint of Inria

    Efficacité et robustesse aux distracteurs d'un retour tactile pour faciliter le pointage

    Get PDF
    International audienceSurfpad is a pointing facilitation technique that operates in the tactile domain by taking advantage of the ability to alter a touchpad's coefficient of friction. We report on two experiments comparing it to the semantic pointing technique and constant control-display gain with and without distractor targets. Our results clearly show the limits of traditional target-aware gain adaptation in the latter case, and the benefits of our tactile approach in both cases. Surfpad can lead to a performance improvement of up to 21% compared to unassisted pointing at small targets with no distractor. It is also robust to high distractor densities, keeping an average performance improvement of nearly 10% while semantic pointing can degrade up to 100%.Surfpad est une technique de facilitation du pointage tirant parti de la possibilité de modifier le coefficient de friction d'un pavé tactile. Nous décrivons deux expériences comparant cette technique au pointage sémantique et à un gain control-display constant, avec et sans distracteurs. Nos résultats montrent les limites de l'adaptation de gain sensible aux cibles en présence de distracteurs et les avantages de notre approche tactile dans les deux cas. Le gain de temps permis par Surfpad face au pointage sans assistance peut aller jusqu'à 21% dans le cas de petites cibles sans distracteur. Notre technique est également robuste aux grandes densités de distracteurs, améliorant en moyenne les performances de prÚs de 10% quand le pointage sémantique peut les dégrader jusqu'à 100%

    Finding the Minimum Perceivable Size of a Tactile Element on an Ultrasonic Based Haptic Tablet

    Get PDF
    International audienceTactile devices with ultrasonic vibrations (based on squeeze film effect) using piezoelectric actuators are one of the existing haptic feedback technologies. In this study we have performed two psychophysical experiments on an ultrasonic haptic tablet, in order to find the minimum size of a tactile element on which all the users are able to perfectly identify different types of textures. Our results show that the spatial resolution of the tactile element on haptic touchscreen actually varies, depending on the number and types of tactile feedback information. A first experiment exhibits three different tactile textures, chosen as being easily recognized by users. We use these textures in a second experiment, and evaluate minimal spatial area on which the chosen set of textures can be recognized. Among other, we find the minimal size depends on the texture nature

    Modeling of an Ultrasonic Powder Transportation System

    Get PDF
    This paper presents a new powder transportation system that uses a high frequency flexural stationary wave coupled with a low frequency horizontal displacement of a beam to produce the transport of the powder. The ultrasonic wave is produced with the help of piezoelectric cells glued under the beam and is used to decrease the friction coefficient between the powder and the beam surface
    • 

    corecore